Search results for "Wake-sleep algorithm"

showing 8 items of 8 documents

Adjusted bat algorithm for tuning of support vector machine parameters

2016

Support vector machines are powerful and often used technique of supervised learning applied to classification. Quality of the constructed classifier can be improved by appropriate selection of the learning parameters. These parameters are often tuned using grid search with relatively large step. This optimization process can be done computationally more efficiently and more precisely using stochastic search metaheuristics. In this paper we propose adjusted bat algorithm for support vector machines parameter optimization and show that compared to the grid search it leads to a better classifier. We tested our approach on standard set of benchmark data sets from UCI machine learning repositor…

0209 industrial biotechnologyWake-sleep algorithmActive learning (machine learning)Computer scienceStability (learning theory)Linear classifier02 engineering and technologySemi-supervised learningcomputer.software_genreCross-validationRelevance vector machineKernel (linear algebra)020901 industrial engineering & automationLeast squares support vector machine0202 electrical engineering electronic engineering information engineeringMetaheuristicBat algorithmStructured support vector machinebusiness.industrySupervised learningOnline machine learningParticle swarm optimizationPattern recognitionPerceptronGeneralization errorSupport vector machineKernel methodComputational learning theoryMargin classifierHyperparameter optimization020201 artificial intelligence & image processingData miningArtificial intelligenceHyper-heuristicbusinesscomputer2016 IEEE Congress on Evolutionary Computation (CEC)
researchProduct

The Bayesian Learning Automaton — Empirical Evaluation with Two-Armed Bernoulli Bandit Problems

2009

The two-armed Bernoulli bandit (TABB) problem is a classical optimization problem where an agent sequentially pulls one of two arms attached to a gambling machine, with each pull resulting either in a reward or a penalty. The reward probabilities of each arm are unknown, and thus one must balance between exploiting existing knowledge about the arms, and obtaining new information.

Balance (metaphysics)Optimization problemWake-sleep algorithmbusiness.industryBayesian inferenceMachine learningcomputer.software_genreAutomatonBernoulli's principleArtificial intelligencebusinessBeta distributioncomputerMathematics
researchProduct

Organized Learning Models (Pursuer Control Optimisation)

1982

Abstract The concept of Organized Learning is defined, and some random models are presented. For Not Transferable Learning, it is necessary to start from an instantaneous learning; by a discrete way, we must form a stochastic model considering the probability of each path; with a continue aproximation, we can study the evolution of the internal state through to consider the relative and absolute probabilities, by means of differential equations systems. For Transferable Learning, the instantaneous learning give us directly the System evolution. So, the Algoritmes for the different models are compared.

Computer Science::Machine LearningComputational learning theoryWake-sleep algorithmActive learning (machine learning)business.industryComputer scienceCompetitive learningAlgorithmic learning theoryStability (learning theory)Online machine learningPursuerArtificial intelligencebusinessIFAC Proceedings Volumes
researchProduct

A New Min-Max Optimisation Approach for Fast Learning Convergence of Feed-Forward Neural Networks

1993

One of the most critical aspect for a wide use of neural networks to real world problems is related to the learning process which is known to be computational expensive and time consuming.

Mathematical optimizationError functionArtificial neural networkWake-sleep algorithmComputer sciencebusiness.industryConvergence (routing)Process (computing)Feed forward neuralArtificial intelligenceDescent directionbusinessGeneralization error
researchProduct

Non Linear Fitting Methods for Machine Learning

2017

This manuscript presents an analysis of numerical fitting methods used for solving classification problems as discriminant functions in machine learning. Non linear polynomial, exponential, and trigonometric models are mathematically deduced and discussed. Analysis about their pros and cons, and their mathematical modelling are made on what method to chose for what type of highly non linear multi-dimension problems are more suitable to be solved. In this study only deterministic models with analytic solutions are involved, or parameters calculation by numeric methods, which the complete model can subsequently be treated as a theoretical model. Models deduction are summarised and presented a…

PolynomialWake-sleep algorithmbusiness.industryComputer scienceOnline machine learningType (model theory)Machine learningcomputer.software_genreExponential functionNonlinear systemDiscriminantArtificial intelligenceTrigonometrybusinesscomputer
researchProduct

Simulated Annealing Technique for Fast Learning of SOM Networks

2011

The Self-Organizing Map (SOM) is a popular unsupervised neural network able to provide effective clustering and data visualization for multidimensional input datasets. In this paper, we present an application of the simulated annealing procedure to the SOM learning algorithm with the aim to obtain a fast learning and better performances in terms of quantization error. The proposed learning algorithm is called Fast Learning Self-Organized Map, and it does not affect the easiness of the basic learning algorithm of the standard SOM. The proposed learning algorithm also improves the quality of resulting maps by providing better clustering quality and topology preservation of input multi-dimensi…

Settore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniComputer Science::Machine LearningArtificial IntelligenceSOM Simulated annealing Clustering Fast learningArtificial neural networkWake-sleep algorithmbusiness.industryComputer scienceTopology (electrical circuits)computer.software_genreAdaptive simulated annealingGeneralization errorData visualizationComputingMethodologies_PATTERNRECOGNITIONArtificial IntelligenceSimulated annealingUnsupervised learningData miningbusinessCluster analysisSelf Organizing map simulated annealingcomputerSoftware
researchProduct

Improved SOM Learning using Simulated Annealing

2007

Self-Organizing Map (SOM) algorithm has been extensively used for analysis and classification problems. For this kind of problems, datasets become more and more large and it is necessary to speed up the SOM learning. In this paper we present an application of the Simulated Annealing (SA) procedure to the SOM learning algorithm. The goal of the algorithm is to obtain fast learning and better performance in terms of matching of input data and regularity of the obtained map. An advantage of the proposed technique is that it preserves the simplicity of the basic algorithm. Several tests, carried out on different large datasets, demonstrate the effectiveness of the proposed algorithm in comparis…

SpeedupMatching (graph theory)Wake-sleep algorithmComputer sciencebusiness.industryPattern recognitioncomputer.software_genreAdaptive simulated annealingGeneralization errorComputingMethodologies_PATTERNRECOGNITIONSimulated annealingSOM simulated Annealing TrainingData miningArtificial intelligencebusinesscomputer
researchProduct

ELM Regularized Method for Classification Problems

2016

Extreme Learning Machine (ELM) is a recently proposed algorithm, efficient and fast for learning the parameters of single layer neural structures. One of the main problems of this algorithm is to choose the optimal architecture for a given problem solution. To solve this limitation several solutions have been proposed in the literature, including the regularization of the structure. However, to the best of our knowledge, there are no works where such adjustment is applied to classification problems in the presence of a non-linearity in the output; all published works tackle modelling or regression problems. Our proposal has been applied to a series of standard databases for the evaluation o…

Wake-sleep algorithmComputer sciencebusiness.industryTraining timeBayesian probability02 engineering and technologyMachine learningcomputer.software_genre01 natural sciencesRegularization (mathematics)Support vector machine010104 statistics & probabilityArtificial Intelligence0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligence0101 mathematicsbusinessRegression problemscomputerSingle layerExtreme learning machineInternational Journal on Artificial Intelligence Tools
researchProduct